Abstract

PurposeThe aim of this study is to evaluate the differences in the fundus autofluorescence (FAF) signal between the blue light autofluorescence (BAF) from Spectralis® (Heidelberg, CA) and green light autofluorescence (GAF) 200TxTM (OPTOS, UK, in normal subjects and in patients with retinochoroidopathies (RC).MethodsIn this prospective study, FAF was performed using BL (λ = 488 nm) and GL (λ = 532 nm) on normal subjects and patients with RC. The corresponding pairs of BAF and GAF images from both groups were analyzed using Photoshop. The strength of the FAF signal was measured on a gray scale, where optic disc was a standard to indicate absence of AF. In addition, gray values obtained from three identical points (foveal center, and points of hypo and hyper autofluorescence) in the corresponding BAF and GAF images of normal and RC subjects were divided by the optic disc value to calculate autofluorescence signal ratio (R). The R values at fovea (R1), hypoautofluorescent point (R2), and hyperautofluorescent point (R3) were compared between BAF and GAF modalities, in normal and in RC subjects separately.ResultsOne hundred six pairs (106 eyes) of FAF images analyzed (37 pairs: normal and 69 pairs: RC subjects). In normal subjects, the mean R1, R2, and R3 values for BAF were (1.5 ± 0.88, 1.23 ± 0.58, and 4.73 ± 2.85, respectively) and for GAF were (0.78 ± 0.20, 0.78 ± 0.20, and 1.62 ± 0.39, respectively). Similarly, in subjects with RC, the mean R1, R2, and R3 values for BAF were (1.68 ± 1.02, 1.66 ± 1.15, and 7.75 ± 6.82, respectively) and for GAF were (0.95 ± 0.59, 0.79 ± 0.45, and 2.50 ± 1.65, respectively). The mean difference in the R1, R2, and R3 ratios between BAF and GAF in normal and in RC subjects was statistically significant (p < 0.001). The strength of the correlation (r) between ratios for BAF and GAF was weak or not statistically significant in both normal and RC subjects (p > 0.05).ConclusionThe distribution and intensity of the AF signal differ in BAF and GAF and cannot be used interchangeably. In BAF, optic disc signal is always weaker than in other areas, which was not true for GAF where optic disc signal was stronger than fovea and hypoautofluorescent point in both groups.

Highlights

  • In recent years, the study of retinal fundus autofluorescence (FAF) has provided important information regarding the production of retinal fluorophores during physiological aging and in pathological events [1]

  • It is well known that the dominant source of FAF signal results from light excitation of the fluorophores in lipofuscin (LF) [2, 3]

  • Each pair consisted of blue light AF (BAF) and green light AF (GAF) images of the same area

Read more

Summary

Introduction

The study of retinal fundus autofluorescence (FAF) has provided important information regarding the production of retinal fluorophores during physiological aging and in pathological events [1]. FAF images can map the metabolic status of both retinal pigment epithelium (RPE) and photoreceptor outer segment. LF is physiologically produced within the RPE and reflects its metabolic activity, which is largely determined by the quantity of photoreceptor outer segment renewal [4]. A2E along with other fluorophores are subject to photooxidation and photodegradation with resulting damage to RPE secondary to formation of advanced glycosylated end products, complement activation, detergent like effect on lysosomal membranes, impaired lysosomal activity, and generation of free radicals within the RPE cells [5,6,7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call