Abstract

As one of the most highly integrated system-on-a-chip application-specific integrated circuits (ASICs) to date, the Blue Gene®/L compute chip presented unique challenges that required extensions of the standard ASIC synthesis, timing, and physical design methodologies. We describe the design flow from floorplanning through synthesis and timing closure to physical design, with emphasis on the novel features of this ASIC. Among these are a process to easily inject datapath placements for speed-critical circuits or to relieve wire congestion, and a timing closure methodology that resulted in timing closure for both nominal and worst-case timing specifications. The physical design methodology featured removal of the pre-physical-design buffering to improve routability and visualization of buses, and it featured strategic seeding of buffers to close wiring and timing and end up at 90% utilization of total chip area. Robustness was enhanced by using additional input/output (I/O) and internal decoupling capacitors and by increasing I/O-to-C4 wire widths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.