Abstract
The question of whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data has been an outstanding open problem in fluid dynamics and mathematics. Recent studies indicate that the local geometric regularity of vortex lines can lead to dynamic depletion of vortex stretching. Guided by the local non-blowup theory, we have performed large scale computations of the 3D Euler equations on some of the most promising blowup candidates. Our results show that there is tremendous dynamic depletion of vortex stretching. The local geometric regularity of vortex lines and the anisotropic solution structure play an important role in depleting the nonlinearity dynamically and thus prevents a finite time blowup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.