Abstract

We consider the isosceles $3$--body problem with the third particle having a small mass which eventually tend to zero. Classical McGehee's blow up is not defined because the matrix of masses becomes degenerate. Following Elbialy [3] we perform the blow up using the Euclidean norm in the planar $3$--body problem. We then complete the phase portrait of the flow in the collision manifold giving the behavior of some branches of saddle points missing in [3]. The homothetic orbits within the fixed energy level then provide the necessary recurrence in order to build a symbolic dynamics. This is done following ideas of S. Kaplan [6] for the collinear $3$--body problem. Here the difficulty is the larger number of critical points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.