Abstract

Human cells express five DNA helicases that are paralogs of Escherichia coli RecQ and which constitute the family of human RecQ helicases. Disease-causing mutations in three of these five human DNA helicases, BLM, WRN, and RECQL4, cause rare severe human genetic diseases with distinct clinical phenotypes characterized by developmental defects, skin abnormalities, genomic instability, and cancer susceptibility. Although biochemical and genetic evidence support roles for all five human RecQ helicases in DNA replication, DNA recombination, and the biological responses to DNA damage, many questions concerning the various functions of the human RecQ helicases remain unanswered. Researchers investigating human and non-human RecQ helicases held a workshop on May 27–28, 2008, at the University of Chicago Gleacher Center, during which they shared insights, discussed recent progress in understanding the biochemistry, biology, and genetics of the RecQ helicases, and developed research strategies that might lead to therapeutic approaches to the human diseases that result from mutations in RecQ helicase genes. Some workshop sessions were held jointly with members of a recently formed advocacy and support group for persons with Bloom's syndrome and their families. This report describes the outcomes and main discussion points of the workshop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call