Abstract
A field experiment was carried out in mudflats adjacent to the Yellow Sea, China, amended with sewage sludge and vermicompost by one-time input at different rates to reveal the fates of tetracycline resistance genes (TRGs) and their potential hosts in the soils. Quantitative PCR results showed that soils added with either sludge or vermicompost had more abundant TRGs compared with the non-fertilized soil. This situation was more obvious in sludge fertilized soils especially at high application rates. Vermicompost exhibited a promising outlook for improvement of the mudflats. The abundances of intI1 in the non-fertilized soils were significantly higher than those in fertilizers and fertilized soils. The potential hosts for intI1 were not shared with other TRGs-contained hosts, indicating that intI1 had little effects on the dissemination of TRGs in the mudflats. Moreover, the exclusive hosts for TRGs in fertilizers were not higher than those in the non-fertilized soils, illustrating little effects of fertilization on the introduction of exogenous TRGs into soil. The shared hosts between soil and fertilizers were highest among four possible sources, contributing vastly to the bloom of TRGs following fertilization. It was also shown that different organic fertilizers caused distinct categories of shared potential hosts for TRGs. RDA analysis further indicated that the abundances of the shared potential hosts were affected by soil nutrients. These results suggested that the development of TRGs in soil following fertilization depended on the shared potential hosts with similar ecological niches between soil and fertilizers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have