Abstract

The purpose of this study was to elucidate the mechanisms of blood-to-retina creatine transport across the blood-retinal barrier (BRB) in vivo and in vitro, and to identify the responsible transporter(s). The creatine transport across the BRB in vivo and creatine uptake in an in vitro model of the inner BRB (TR-iBRB2 cells) were examined using [(14)C]creatine. Identification and localization of the creatine transporter (CRT) were carried out by RT-PCR, western blot, and immunoperoxidase electron microscopic analyses. An in vivo intravenous administration study suggested that [(14)C]creatine is transported from the blood to the retina against the creatine concentration gradient that exists between the retina and blood. [(14)C]Creatine uptake by TR-iBRB2 cells was saturable, Na(+)- and Cl(-)-dependent and inhibited by CRT inhibitors, suggesting that CRT is involved in creatine transport at the inner BRB. RT-PCR and western blot analyses demonstrated that CRT is expressed in rat retina and TR-iBRB2 cells. Moreover, using an immunoperoxidase electron microscopic analysis, CRT immunoreactivity was found at both the luminal and abluminal membranes of the rat retinal capillary endothelial cells. In conclusion, CRT is expressed at the inner BRB and plays a role in blood-to-retina creatine transport across the inner BRB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.