Abstract

Blood samples are easily damaged in traditional bloodstain detection and identification. In complex scenes with interfering objects, bloodstain identification may be inaccurate, with low detection rates and false-positive results. In order to meet these challenges, we propose a bloodstain detection and identification method based on hyperspectral imaging and mixed convolutional neural networks, which enables fast and efficient non-destructive identification of bloodstains. In this study, we apply visible/near-infrared reflectance hyperspectral imaging in the 380-1000 nm spectral region to analyze the shape, structure, and biochemical characteristics of bloodstains. Hyperspectral images of bloodstains on different substrates and six bloodstain analogs are experimentally obtained. The acquired spectral pixels are pre-processed by Principal Component Analysis (PCA). For bloodstains and different bloodstain analogs, regions of interest are selected from each substance to obtain pixels, which are further used in convolutional neural network (CNN) modeling. After the mixed CNN modeling is completed, pixels are selected from the hyperspectral images as a test set for bloodstains and bloodstain analogs. Finally, the bloodstain recognition ability of the mixed 2D-3D CNN model is evaluated by analyzing the kappa coefficient and classification accuracy. The experimental results show that the accuracy of the constructed CNN bloodstain identification model reaches 95.4%. Compared with other methods, the bloodstain identification method proposed in this study has higher efficiency and accuracy in complex scenes. The results of this study will provide a reference for the future development of the bloodstain online detection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.