Abstract

Cold damage is one of the disasters that cause significant loss and irreversible damage in crop production. To avoid yield loss, high-throughput phenotyping can be used to select the crop varieties with cold stress resistance. Nowadays, non-destructive spectral image analysis has become an effective way and is widely used in high-throughput phenotyping, which reflects the structural, physiological, biochemical characteristics and traits of plant structure and composition, plant growth and development processes and outcomes. This study used convolutional neural network (CNN) model to extract spectral features in the visible-near-infrared range to estimate cold damage of corn seedlings. The hyperspectral images of cold treated corn seedlings from five varieties were used as research objects in this study. The spectral range of the images was 450-885nm. Gaussian low-pass filter and the Savitzky-Golay smoothing method combined with the first-order derivative was used to do pre-processing for spectral data. For each corn variety, 3600 pixel samples obtained from the selected region of interests in each variety of corn seedlings were used for the CNN modeling. After the CNN modeling, 400 pixel samples extracted from the hyperspectral images were used as the testing set for each variety. Finally, a 10-layer knot CNN model was determined by analyzing the classification accuracy and computational efficiency. CNN detected the cold damage level of different types of corn seedlings as W22 (41.8 %), BxM (35%), B73 (25.6%), PH207 (20%), Mo17 (14%), which had high correlation with the ranking given by chemical method. The coefficient of correlation between cold damage detection results of CNN and results from chemical method is 0.8219. Therefore, it proves that spectral analysis based on CNN modeling can provide reference for detecting cold damage in corn seedlings.

Highlights

  • Cold damage refers to the phenomenon that crops delay or stop growing when the temperature drops below the temperature limit during the growth of crops

  • This paper aims to study the corn seedlings based on hyperspectral imagery after cold stress, extract the spectral curves of the comprehensive evaluation index of cold damage, and use deep learning analysis to construct a model for corn seedling damage detection

  • Since the development of convolution neural networks, the high performance of algorithms has attracted the attention of scholars

Read more

Summary

Objectives

This paper aims to study the corn seedlings based on hyperspectral imagery after cold stress, extract the spectral curves of the comprehensive evaluation index of cold damage, and use deep learning analysis to construct a model for corn seedling damage detection. Our goal was to provide a basis for work towards maximizing the ability of maize to withstand and recover from early season cold stress events

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.