Abstract

The effect of He-Ne laser irradiation on platelet adhesion, activation and aggregation was investigated. Citrated whole blood was irradiated in vitro by He-Ne laser (632.8 nm, 7 mW) and then subjected to shear stress (1300 s -1 ) on subendothelial extracellular matrix (ECM)-coated plates. Laser irradiation was followed by a decrease in platelet adhesion and aggregation on ECM under flow conditions in a time exposure-dependent manner (by 30-40%). The inhibiting effect of laser light on platelets was detectable up to 1 h after the termination of irradiation. Laser irradiation of either platelet-rich plasma, gel-filtered platelets, platelet-poor plasma, or packed blood cells followed by whole blood reconstitution revealed a marked decrease in platelet deposition on ECM only in the cases of platelet-rich plasma or gel filtered platelets. In conventional aggregometry, laser-treated platelet-rich plasma demonstrated a diminished platelet response to both thrombin receptor-activating peptide (TRAP), converting a two-wave aggregation curve to reversible, and to the protein kinase C activator PMA (by 45%). In flow cytometry analysis, irradiated platelets presented lower fibrinogen binding and P-selectin expression in response to TRAP. Laser irradiation had no additional inhibitory effect on dibutyryl cGMP- and dibutyryl cAMP-pretreated platelets. A 50% increase in cGMP level was observed in laser-treated gel filtered platelets, both in the presence and in absence of the phosphodiesterase inhibitor, isobuthylmethylxanthine. The results suggest that guanylate cyclase is one of the primary mediators of the laser effect on platelet function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.