Abstract

BackgroundThere are a few nutritional approaches to address the increased needs of managing diabetic conditions. Previously it has been reported that UP780, a standardized composition of aloe chromone formulated with an aloe polysaccharide, has a significant impact in reducing HbA1C, fasting blood glucose, fructosamine and plasma insulin level in humans and improved impaired glucose and insulin resistance in high-fat diet-induced and db/db non-insulin dependent diabetic mouse models. Here we describe activity of UP780 and its constituents to improve insulin sensitivity in alloxan induced insulin dependent diabetic mouse model.Materials and methodInsulin dependent diabetes was induced by administering a single intraperitoneal injection of alloxan monohydrate at a dose of 150 mg/kg to CD-1 mice. Aloesin (UP394) was formulated with an Aloe vera inner leaf gel powder polysaccharide (Qmatrix) to yield a composition designated UP780. Efficacy of oral administration of UP780 at 2000 mg/kg and its constituents (aloesin at 80 mg/kg and Qmatrix at 1920 mg/kg) were evaluated in this model. Glyburide, a sulfonylurea drug used in the treatment of type 2 diabetes, was used at 5 mg/kg as a positive control. Effect of UP780 on non-diabetic normal mice was also addressed.ResultsMice administered intraperitoneal alloxan monohydrate developed progressive type-1 diabetes like symptom. After 4 weeks of daily oral administration, reductions of 35.9%, 17.2% and 11.6% in fasting blood glucose levels were observed for UP780, the UP780 Aloe vera inner leaf gel polysaccharide preparation without chromone (Qmatrix), and Aloesin (UP394), treated animals respectively, compared to vehicle treated animals. UP780 has no impact on blood glucose level of non-diabetic healthy mice. UP780 showed statistically significant improvement for blood glucose clearance in oral glucose tolerance tests. Similarly, enhanced improvement in plasma insulin level and statistically significant reduction in triglyceride level was also observed for animals treated with the composition.ConclusionThese findings suggest that UP780, a chromone standardized Aloe based composition, could possibly be used as a natural supplement alternative to facilitate maintenance of healthy blood glucose levels.

Highlights

  • Ethnobotanical archives reveal that more than 800 plants have been used as an alternative remedies for the treatment of high blood glucose associated human ailments with minor or no scientific evidence

  • After 4 weeks of daily oral administration, reductions of 35.9%, 17.2% and 11.6% in fasting blood glucose levels were observed for UP780, the UP780 Aloe vera inner leaf gel polysaccharide preparation without chromone (Qmatrix), and Aloesin (UP394), treated animals respectively, compared to vehicle treated animals

  • UP780 has no impact on blood glucose level of non-diabetic healthy mice

Read more

Summary

Introduction

Ethnobotanical archives reveal that more than 800 plants have been used as an alternative remedies for the treatment of high blood glucose associated human ailments with minor or no scientific evidence. Aloe products have been used in dermatological applications for the treatment of burns, sores and wounds. These uses have stimulated a great deal of research in identifying polysaccharides, chromones, anthraquinones and other compounds from Aloe plants that have clinical implications as anti-inflammatory [2,3] anti-tumor, antigastric ulcer, anti-diabetic, anti-tyrosinase [4] and antioxidant activity [5]. It has been reported that UP780, a standardized composition of aloe chromone formulated with an aloe polysaccharide, has a significant impact in reducing HbA1C, fasting blood glucose, fructosamine and plasma insulin level in humans and improved impaired glucose and insulin resistance in high-fat diet-induced and db/db non-insulin dependent diabetic mouse models. We describe activity of UP780 and its constituents to improve insulin sensitivity in alloxan induced insulin dependent diabetic mouse model

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call