Abstract

Research on the zoo-anthropophilic blood feeding tsetse flies’ biology conducted, by different teams, in laboratory settings and at the level of the ecosystems- where also co-perpetuate African Trypanosoma- has allowed to unveil and characterize key features of tsetse flies’ bacterial symbionts on which rely both (a) the perpetuation of the tsetse fly populations and (b) the completion of the developmental program of the African Trypanosoma. Transcriptomic analyses have already provided much information on tsetse fly genes as well as on genes of the fly symbiotic partners Sodalis glossinidius and Wigglesworthia, which account for the successful onset or not of the African Trypanosoma developmental program. In parallel, identification of the non- symbiotic bacterial communities hosted in the tsetse fly gut has recently been initiated: are briefly introduced those bacteria genera and species common to tsetse flies collected from distinct ecosystems, that could be further studied as potential biologicals preventing the onset of the African Trypanosoma developmental program. Finally, future work will need to concentrate on how to render tsetse flies refractory, and the best means to disseminate them in the field in order to establish an overall refractory fly population.

Highlights

  • Human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT or nagana) are caused by flagellate protozoa belonging to the genus Trypanosoma

  • Brief review of the methods /approaches for generating Glossina morsitans morsitans and Glossina palpalis gambiense populations engineered to durably replace the native tsetse flies perpetuating in distinct ecosystems The current state of knowledge regarding fly/microbiome/trypanosome interactions suggests that tsetse flies could be made refractory to trypanosome infection

  • Paratransgenesis As opposed to genetic transformation of the tsetse fly target organism, paratransgenesis makes use of a compound of interest that is introduced in vivo into the fly by a microorganism which after being suitably selected or engineered, will be injected into the tsetse gut. This approach was suggested by Rio et al [116], who considered the secondary symbiont S. glossinidius to be well-adapted for such a “paratransgenesis” strategy. This choice is supported by five lines of evidence: the symbiont grows in the fly gut and hemolymph as do trypanosomes [42]; it can be isolated, cultivated in vitro, and genetically transformed [42, 107, 117, 118] as it was shown by De Vooght et al [118], when introducing a functional anti-trypanosome nanobody; it can be reintroduced into the fly [119]; it is most frequently transmitted maternally to the offspring [33, 120], despite the recent demonstration of paternal transmission during mating [121]; and due to the large-scale erosion of its genome [122, 123], Sodalis is metabolically dependent on its tsetse fly host, suggesting that no gene flow towards any other organisms will occur once the tsetse fly harboring the modified symbiont is distributed in HAT foci

Read more

Summary

Introduction

Human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT or nagana) are caused by flagellate protozoa belonging to the genus Trypanosoma. The interactions between the microbial symbionts and their insect host (including their possible interference with the host’s susceptibility to trypanosome infection) have been actively studied in the past, these types of investigations are almost absent today regarding recently identified bacteria from the intestinal flora.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.