Abstract
BackgroundLong non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) contributes to cartilage damages including osteoarthritis (OA). While, its role and mechanism in chondrocytes is incompletely clear. MethodsHOTAIR, microRNA (miR)–222-3p and ADAM metalloproteinase-like domain 10 (ADAM10) expressions were detected by real-time quantitative PCR and western blotting. The interaction between miR-222-3p and HOTAIR or ADAM10 was confirmed by dual-luciferase reporter assay. Cell injury was measured by MTS method, flow cytometry, western blotting, enzyme-linked immunosorbent assay for collagen Type II, type X, sex determining region Y-box 9 (SOX9), matrix metalloproteinase (MMP)-13, interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α, and special assay kits for malondialdehyde (MDA), reactive oxygen species (ROS) and superoxide dismutase (SOD). ResultsHOTAIR was highly expressed in human OA cartilages and IL-1β-induced OA model in immortalized chondrocytes (C-28/I2). Under IL-1β stress, blocking HOTAIR was responsible to high mitochondrial activity and low early apoptosis rate, accompanied with increased B cell lymphoma (Bcl)-2 and LC3B-II/I proteins, boosted IL-10 and SOD productions, suppressed cleaved caspase-3 and p62 proteins, and decreased MDA and ROS levels, as well as elevated secretions of Type II collagen, Type X collagen, SOX9, MMP-13, IL-6, and TNF-α. Moreover, miR-222-3p was a target of HOTAIR, and its overexpression and knockdown could suppress and aggravate IL-1β-induced chondrocytes injury. Furthermore, restoring ADAM10, a target gene of miR-222-3p, counteracted the protective role of miR-222-3p upregulation. ConclusionHOTAIR might contribute to IL-1β-induced chondrocytes death, inflammation, extracellular matrix degradation, and oxidative stress in OA via miR-222-3p/ADAM10 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.