Abstract

Background: A rapid development of viral drug resistance poses a serious limitation in the current drug development programs against HIV. In turn, this obstacle forms the basis for new efforts, which utilize alternative viral targets. Results: By aiming at the Tat-driven process of HIV gene regulation, we discovered a new class of compounds as well as a novel target. The candidate compound acts on the one hand by classically inhibiting Tat/TAR complexation, however, without binding to nucleic acids. Conclusions: Structure and molecular modeling/dynamics suggest that the stilbene derivative CGA137053 directly binds to Tat protein but not TAR RNA. As a completely new, second property, the compound also antagonizes a TAR-independent activity of free Tat protein by preventing the recently described upregulation of the HIV coreceptor CXCR4. With the stilbene CGA137053, we have identified a potent, double-hitting and chemically feasible Tat antagonist. The compound possesses high target specificity and low cytotoxicity, is not restricted to the Tat/TAR axis of HIV inhibition and highly active on HIV-infected, primary human cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call