Abstract
The development of local energy communities observed in the last years requires the reorganization of energy consumption and production. In these newly considered energy systems, the commercial and technical decision processes should be decentralized in order to reduce their maintenance costs. This will be allowed by the progressive spreading of IoT systems capable of interacting with distributed energy resources, giving local sources the ability to be optimally coordinated in terms of network and energy management. In this context, this paper presents a decentralized controlling architecture that performs a wide spectrum of power system optimization procedures oriented to the local market management. The controller framework is based on a decentralized genetic algorithm. The manuscript describes the structure of the tool and its validation, considering an automated distributed resource scheduling for local energy markets. The simulation platform permits implementing the blockchain-based trading process and the automated distributed resource scheduling. The effectiveness of the tool proposed is discussed with a hardware-in-the-loop case study.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have