Abstract
Therapeutic angiogenesis by delivery of vascular endothelial growth factor (VEGF) has attracted attention. However, the role and function of VEGF in experimental restenosis (neointimal formation) after vascular intraluminal injury have not been addressed. We report herein that blockade of VEGF by soluble VEGF receptor 1 (sFlt-1) gene transfer attenuated neointimal formation after intraluminal injury in rabbits, rats, and mice. sFlt-1 gene transfer markedly attenuated the early vascular inflammation and proliferation and later neointimal formation. sFlt-1 gene transfer also inhibited increased expression of inflammatory factors such as monocyte chemoattractant protein-1 and VEGF. Intravascular VEGF gene transfer enhanced angiogenesis in the adventitia but did not reduce neointimal formation. Increased expression and activity of VEGF are essential in the development of experimental restenosis after intraluminal injury by recruiting monocyte-lineage cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have