Abstract

Inhibition of stress-induced elevations in brain-derived neurotrophic factor (BDNF) or its primary receptor tyrosine-related kinase B (TrkB) within the reward pathway may modulate vulnerability to anxiety and mood disorders. The current study examined the role of BDNF/TrkB signaling on biochemistry and behavior under basal conditions and following exposure to a 10-day heterotypic stress paradigm in male rats. Effects of intra-accumbal administration of TrkB antagonist ANA-12 (0.25μg/0.5μl/min) on anxiety, and expression of Trk-B, corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway were determined. Notably, ANA-12 attenuated anxiety-like behavior in stress rats while increasing anxiety in the non-stress group in the elevated plus maze (EPM). At the neurochemical level, ANA-12 blocked the increased vGluT2 and CRH expressions in the hypothalamic PVN and basolateral amygdala in stress rats, while it enhanced vGluT2 and CRH expressions in non-stress rats. ANA-12 also showed state-dependent effects at the NAc core, attenuating TrkB-ir in non-stress rats while reversing reduced expression in stressed rats. At the cingulate cortex, ANA-12 normalized stress-induced increase in TrkB expression. Notably, ANA-12 showed region-specific effects on GR-ir at the NAc core and shell, with increased GR-ir in non-stress rats, although the drug attenuated stress-induced GR-ir expression only in the core portion of the NAc, while having no impact at the cingulate cortex. Elevated blood CORT levels post-stress was not influenced by ANA-12 treatment. Together, these findings suggest that BDNF-mediated TrkB activation exerts differential impact in regulating emotional response under basal and stress conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.