Abstract
Activation of metabotropic glutamate receptor 5 (mGluRs) in the subthalamic nucleus (STN) results in burst-firing activity of STN neurons, which is similar to that observed in Parkinson's disease (PD). We examined the effects of chronic and systemic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, in firing activity of STN neurons in partially lesioned rats by 6-hydroxydopamine (6-OHDA). In 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (4 microg) into the medial forebrain bundle produced a partial lesion causing 36% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc). The 6-OHDA lesion in vehicle-treated rats showed an increasing firing rate and a more irregular firing pattern of STN neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, 14 days) produced neuroprotecive effects on the TH-ir neurons and normalized the hyperactive firing activity of STN neurons in 6-OHDA partially lesioned rats. These data demonstrate that partial lesion of the nigrostriatal pathway increases firing activity of STN neurons in the rat, and chronic, systemic MPEP treatment has the neuroprotective effect and reverses the abnormal firing activity of STN neurons, suggesting that MPEP has an important implication for the treatment of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.