Abstract
Although 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective metabotropic glutamate receptor 5 antagonist, improves the motor symptoms of Parkinson's disease (PD), the effects of MPEP on the psychiatric symptom of PD and the mechanism involved are still unclear. In the present study, we examined the effects of MPEP in anxiolytic-like behavior and firing activity of projection neurons in the basolateral nucleus of the amygdala (BLA) in rats with 6-hydroxydopamine (6-OHDA) injected bilaterally into dorsal striatum. Rats were divided into three groups, sham-operated group, 6-OHDA lesion with vehicle treatment group and 6-OHDA lesion with MPEP treatment group. Injection of 6-OHDA (10.5 μg) into the dorsal striatum produced 31.5% loss of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the SNpc. The 6-OHDA-lesioned rats showed anxiety behavior and the firing rate of BLA projection neurons decreased significantly compared with sham-operated rats, and no difference was found in the firing pattern of these neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, i.p.; 14 days) attenuated loss of TH-ir neurons, produced anxiolytic-like effect and normalized the abnormal firing rate of projection neurons of the BLA in rats with the bilateral lesions. Systemic administration of cumulative apomorphine (10–160 μg/kg, i.v.) inhibited the firing rate of BLA projection neurons in sham-operated, 6-OHDA lesion with vehicle-treated and MPEP-treated rats, but the 6-OHDA lesion decreased the response of BLA projection neurons to apomorphine stimulation, while MPEP reversed the reactivity of these neurons. These data demonstrate that the partial lesion of the nigrostriatal pathway causes anxiety symptom and decreases firing rate of BLA projection neurons in the rat. Furthermore, chronic, systemic MPEP treatment has the neuroprotective and anxiolytic-like effects, and reverses the abnormal firing rate of BLA projection neurons, suggesting that MPEP has important implication for the treatment of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.