Abstract

Adhesion molecules regulate the migration of lymphocytes in lymphoid and non-lymphoid organs. In the lung, little is known about lymphocyte sticking and migration through the pulmonary vascular endothelium in physiological or pathological situations. Therefore the isolated buffer-perfused rat lung was used to investigate the mobilization of lymphocytes out of the normal lung into the venous effluent and to the bronchoalveolar space. The lymphocyte subset composition was characterized in the venous effluent, the lung tissue and the bronchoalveolar lavage (BAL) using immunocytology. Lymphocytes continuously left the normal lung at a total of 5.0 +/- 0.7 x 106 cells within the first hour of perfusion. The injection of 200 x 106 lymphocytes via the pulmonary trunk increased the venous release of lymphocytes by 170%. To investigate the effect of LFA-1 and CD44 on the adhesion of lymphocytes to the pulmonary endothelium, lymphocytes preincubated with an anti-LFA-1 MoAb, which blocks the interaction of LFA-1 and intercellular adhesion molecule-1 (ICAM-1), or lymphocytes preincubated with an anti-CD44 MoAb, were injected. The injection of LFA-1-blocked lymphocytes led to an increase by 70% of injected cells recovered in the perfusate within the first hour, whereas anti-CD44 treatment of injected lymphocytes had no effect. The LFA-1-blocked lymphocytes showed higher numbers of T and B cells in the effluent. Thus, the present experiments demonstrate that LFA-1 influences the trapping of lymphocytes in the vasculature of the healthy rat lung.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call