Abstract
Neutrophil rolling and transition to arrest on inflamed endothelium are dynamically regulated by the affinity of the beta(2) integrin CD11a/CD18 (leukocyte function associated antigen 1 (LFA-1)) for binding intercellular adhesion molecule (ICAM)-1. Conformational shifts are thought to regulate molecular affinity and adhesion stability. Also critical to adhesion efficiency is membrane redistribution of active LFA-1 into dense submicron clusters where multimeric interactions occur. We examined the influences of affinity and dimerization of LFA-1 on LFA-1/ICAM-1 binding by engineering a cell-free model in which two recombinant LFA-1 heterodimers are bound to respective Fab domains of an antibody attached to latex microspheres. Binding of monomeric and dimeric ICAM-1 to dimeric LFA-1 was measured in real time by fluorescence flow cytometry. ICAM-1 dissociation kinetics were measured while LFA-1 affinity was dynamically shifted by the addition of allosteric small molecules. High affinity LFA-1 dissociated 10-fold faster when bound to monomeric compared with dimeric ICAM-1, corresponding to bond lifetimes of 25 and 330 s, respectively. Downshifting LFA-1 into an intermediate affinity state with the small molecule I domain allosteric inhibitor IC487475 decreased the difference in dissociation rates between monomeric and dimeric ICAM-1 to 4-fold. When LFA-1 was shifted into the low affinity state by lovastatin, both monomeric and dimeric ICAM-1 dissociated in less than 1 s, and the dissociation rates were within 50% of each other. These data reveal the respective importance of LFA-1 affinity and proximity in tuning bond lifetime with ICAM-1 and demonstrate a nonlinear increase in the bond lifetime of the dimer versus the monomer at higher affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.