Abstract

Stimulation of the amygdala in rats is known to elicit increases in heart rate (HR) and blood pressure (BP) as well as locomotor activity associated with emotional arousal. The present study was conducted to localize and characterize the role of the GABA system of the amygdala in regulating these cardiovascular responses. Male Sprague-Dawley rats with arterial chateters placed for physiological measurements were implanted with chronic microinjection cannulae in the anterior basolateral (BLA) and central (Ce) amygdaloid nuclei under pentobarbital anesthesia. After recovering, rats were microinjected bilaterally with saline (250 nl) and bicuculline methiodide (BMI, 5–25 ng/250 nl), a selective GABA A antagonist. Microinjection of BMI in the BLA caused significant increases in HR and BP as well as locomotor stimulation while saline had no effect. The cardiovascular response to BMI was blocked by pentobarbital anesthesia. Microinjection of equimolar concentrations of (+)-baclofen HCl (GABA B agonist), phaclofen (GABA B antagonist), or strychnine (glycine antagonist) into the BLA or BMI into the Ce had no significant cardiovascular effects. The cardiovascular effects of BMI injection in the BLA does not appear to be secondary to generalized seizure activity. These results suggest that endogenous GABA, acting on GABA A receptors in the region of the BLA, may be involved in cardiovascular regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.