Abstract

Cluster of differentiation 47 (CD47) plays an important role in the pathophysiology of various diseases including atherosclerosis, but its role in neointimal hyperplasia which contributes to restenosis, has not been studied. Using molecular approaches in combination with a mouse vascular endothelial denudation model, we studied the role of CD47 in injury-induced neointimal hyperplasia. We determined that thrombin induced CD47 expression both in human and mouse aortic smooth muscle cells (HASMCs and MASMCs). In exploring the mechanisms, we found that the protease-activated receptor 1 (PAR1)-Gα protein q/11 (Gαq/11)-phospholipase Cβ3 (PLCβ3)-nuclear factor of activated T cells c1 (NFATc1) signaling axis regulates thrombin-induced CD47 expression in HASMCs. Depletion of CD47 levels using its siRNA or interference of its function by its blocking antibody (bAb) blunted thrombin-induced migration and proliferation of HASMCs and MASMCs. In addition, we found that thrombin-induced HASMC migration requires CD47 interaction with integrin β3. On the other hand, thrombin-induced HASMC proliferation was dependent on CD47's role in nuclear export and degradation of CDK-interacting protein 1 (p21Cip1). In addition, suppression of CD47 function by its bAb rescued HASMC efferocytosis from inhibition by thrombin. We also found that vascular injury induces CD47 expression in intimal SMCs and that inhibition of CD47 function by its bAb, while alleviating injury-induced inhibition of SMC efferocytosis, attenuated SMC migration and proliferation resulting in reduced neointima formation. Thus, these findings reveal a pathological role for CD47 in neointimal hyperplasia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call