Abstract
Substantial evidence now implicates endothelin (ET) in the pathophysiology of cerebrovascular disorders such as the delayed vasospasm associated with subarachnoid hemorrhage and ischemic stroke. We investigated the ET receptor subtypes mediating vasoconstriction in human pial arteries. ET receptors on human pial and intracerebral arteries were visualized with the use of autoradiography, and the subtypes mediating vasoconstriction were identified by means of wire myography. ET-1 was more potent than ET-3 as a vasoconstrictor, indicating an ETA-mediated effect. Similarly, the selective ETB agonist sarafotoxin S6c had no effect on contractile action at concentrations up to 30 nmol/L. The nonpeptide ETA receptor antagonist PD156707 (3 to 30 nmol/L) caused a parallel rightward shift of the ET-1-induced response, yielding a pA2 of 9.2. Consistent with these results, PD156707 (30 nmol/L) fully reversed an established constriction in pial arteries induced by 1 nmol/L ET-1, while the selective ETB receptor antagonist BQ788 (1 micromol/L) had little effect. The calcium channel blocker nimodipine (0.3 to 3 micromol/L) significantly attenuated the maximum response to ET-1 in a concentration-dependent manner without changing potency. In agreement with the functional data, specific binding of [125I]PD151242 to ETA receptors was localized to the smooth muscle layer of pial and intracerebral blood vessels. In contrast, little or no [125I]BQ3020 binding to ETB receptors was detected. These data indicate an important role for ETA receptors in ET-1-induced constriction of human pial arteries and suggest that ETA receptor antagonists may provide additional dilatory benefit in cerebrovascular disorders associated with raised ET levels.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.