Abstract

A method for the inversion of block tridiagonal matrices encountered in electronic structure calculations is developed, with the goal of efficiently determining the matrices involved in the Fisher–Lee relation for the calculation of electron transmission coefficients. The new method leads to faster transmission calculations compared to traditional methods, as well as freedom in choosing alternate Green’s function matrix blocks for transmission calculations. The new method also lends itself to calculation of the tridiagonal part of the Green’s function matrix. The effect of inaccuracies in the electrode self-energies on the transmission coefficient is analyzed and reveals that the new algorithm is potentially more stable towards such inaccuracies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.