Abstract
Due to environmental threats and weather uncertainty concerns, oil palm yield prediction is crucial for sustaining crop production. This can be achieved through machine learning and utilising remotely sensed data to predict crop yield. However, the comparative studies on remotely sensed data in adopting the machine learning models are still limited due to the data accessibility. Therefore, we compare and evaluate the prediction accuracy between different satellites, namely MODIS and Landsat-7, using machine learning algorithms and the topology of deep neural networks. Random forest and stacking outperformed linear regression, ridge regression, and lasso regression for both Landsat-7 NDVI (R2= 0.78–0.80; RMSE=1.00- 1.26 tonnes per hectare; MAE=0.77- 0.79 tonnes per hectares; MAPE=0.03-0.04 tonnes per hectare) and MODIS NDVI (R2= 0.60–0.65 tonnes per hectares; RMSE= 2.72–2.81 tonne per hectares; MAE= 1.42-1.55, MAPE= 1.01- 1.02 tonnes per hectares). The Landsat-7 NDVI revealed that neural networks with a deeper network topology (R2= 0.85; RMSE= 1.42 tonnes per hectare; MAE=0.57 tonnes per hectares; MAPE=0.06 tonnes per hectare) outperformed neural networks with a baseline and broader network topologies in terms of performance. In contrast, MODIS-NDVI revealed that the neural network with a wider network topology had the highest overall prediction accuracy and the lowest prediction error (R2= 0.75; RMSE= 2.81 tonnes per hectare; MAE=2.27 tonnes per tonnes; MAPE= 0.13). Because of its higher spatial resolution in comparison to MODIS, landsat-7 NDVI used in neural networks with a deep network topology provided the best model performance. Although the use of NDVI as a single input factor may cause uncertainty in some extents, it is an efficient and reliable method for improving yield estimation with the use of medium-resolution satellites, which has important implications for early warning towards the reduction in yield production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Applied Sciences and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.