Abstract
Synthesis and properties of aromatic block copolymers composed of highly sulfonated phenylene ether sulfone ketone units as hydrophilic blocks and phenylene ether biphenyene sulfone units as hydrophobic blocks are reported. High molecular weight block copolymers 4 (Mw = 275–362 kDa and Mn = 76–144 kDa) with different compositions (number of repeat unit in the hydrophobic blocks (X) = 15, 30, or 60, and that of hydrophilic blocks (Y) = 4, 8, or 12) were synthesized. Transparent and bendable membranes were obtained by casting from the solution of 4. Due to the rigid rod-like structure of the hydrophilic blocks, the nanophase-separated morphology was not as distinct as that of the conventional sulfonated aromatic block copolymer membranes. Highly sulfonated hydrophilic blocks, which contained phenylene rings with sulfonic acid groups and electron-withdrawing sulfone or ketone groups, contributed to the high proton conductivity and improved oxidative stability of 4 membranes. The 4 (X60Y12) membrane with low IEC (1.18 mequiv g−1) showed comparable or higher conductivity than that of Nafion at >80% relative humidity (RH).
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have