Abstract
A variety of block Krylov subspace methods have been successfully developed for linear systems and matrix equations. The application of block Krylov methods to compute matrix functions is, however, less established, despite the growing prevalence of matrix functions in scientific computing. Of particular importance is the evaluation of a matrix function on not just one but multiple vectors. The main contribution of this paper is a class of efficient block Krylov subspace methods tailored precisely to this task. With the full orthogonalization method (FOM) for linear systems forming the backbone of our theory, the resulting methods are referred to as B(FOM)2: block FOM for functions of matrices. Many other important results are obtained in the process of developing these new methods. Matrix-valued inner products are used to construct a general framework for block Krylov subspaces that encompasses already established results in the literature. Convergence bounds for B(FOM)2 are proven for Stieltjes functions applied to a class of matrices which are self-adjoint and positive definite with respect to the matrix-valued inner product. A detailed algorithm for B(FOM)2 with restarts is developed, whose efficiency is based on a recursive expression for the error, which is also used to update the solution. Numerical experiments demonstrate the power and versatility of this new class of methods for a variety of matrix-valued inner products, functions, and matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ETNA - Electronic Transactions on Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.