Abstract
Many Krylov subspace methods for shifted linear systems take advantage of the invariance of the Krylov subspace under a shift of the matrix. However, exploiting this fact in the non-Hermitian case introduces restrictions; e.g., initial residuals must be collinear and this collinearity must be maintained at restart. Thus we cannot simultaneously solve shifted systems with unrelated right-hand sides using this strategy, and all shifted residuals cannot be simultaneously minimized over a Krylov subspace such that collinearity is maintained. It has been shown that this renders them generally incompatible with techniques of subspace recycling [K. M. Soodhalter, D. B. Szyld, and F. Xue, Appl. Numer. Math., 81C (2014), pp. 105--118]. This problem, however, can be overcome. By interpreting a family of shifted systems as one Sylvester equation, we can take advantage of the known “shift invariance” of the Krylov subspace generated by the Sylvester operator. Thus we can simultaneously solve all systems over one block Krylov subspace using the full orthogonalization method or GMRES-type methods, even when they have unrelated right-hand sides. Because residual collinearity is no longer a requirement at restart, these methods are fully compatible with subspace recycling techniques. Furthermore, we realize the benefits of block sparse matrix operations which arise in the context of high-performance computing applications. In this paper, we discuss exploiting this Sylvester equation point of view which has yielded methods for shifted systems which are compatible with unrelated right-hand sides. From this, we propose a recycled GMRES method for simultaneous solution of shifted systems. Numerical experiments demonstrate the effectiveness of the methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: SIAM Journal on Scientific Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.