Abstract

Nonnegative matrix factorization (NMF) is a linear approach for extracting localized feature of facial image. However, NMF may fail to process the data points that are nonlinearly separable. The kernel extension of NMF, named kernel NMF (KNMF), can model the nonlinear relationship among data points and extract nonlinear features of facial images. KNMF is an unsupervised method, thus it does not utilize the supervision information. Moreover, the extracted features by KNMF are not sparse enough. To overcome these limitations, this paper proposes a supervised KNMF called block kernel NMF (BKNMF). A novel objective function is established by incorporating the intra-class information. The algorithm is derived by making use of the block strategy and kernel theory. Our BKNMF has some merits for face recognition, such as highly sparse features and orthogonal features from different classes. We theoretically analyze the convergence of the proposed BKNMF. Compared with some state-of-the-art methods, our BKNMF achieves superior performance in face recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.