Abstract

To ensure fire safety, polymers are filled with flame retardants and smoke suppressants. To meet the highest requirements, it is essential to understand the decomposition of those polymeric materials. This study reveals interactions between polymer, smoke suppressants, and flame retardants, and discusses their impact on the materials’ flame retardancy, smoke emission, smoke toxicity, and particle emission in conventional loadings to provide deeper general understanding. Low melting oxide glass, melem, spherical silica, sepiolite, melamine polyphosphate, and boehmite in an aluminum diethylphosphinate flame-retarded polyamide 6.6 were investigated. All smoke suppressants improve the protective layer and act as an adjuvant. Silica and melem performed best under forced flaming conditions. Spherical silica reduces the peak of heat release rate by 39% and the total heat evolved by 14%, whereas 10 wt% melem lowers the total smoke production by 41%. Melem alters the mode of action of aluminum diethylphosphinate from gas to more condensed phase activity. This change reduces flame inhibition and hence smoke toxicity, but further improves the protective layer due to charring reactions in the decomposition mechanism. In addition, the sizes of the smoke particles decrease because of the prolonged time in the pyrolytic zone. This study highlights that interactions between polymer, flame retardants, and smoke suppressants can significantly determine the smoking and burning behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call