Abstract

Anion exchange membranes play a crucial part as the primary component of alkaline fuel cells, yet their optimization remains an ongoing endeavor. While research and development efforts have made strides in advancing anion exchange membranes, a pressing need exists to further refine their mechanical properties, ionic conductivity, and chemical stability, especially in comparison to proton exchange membranes. Block copolymers have emerged as promising candidates among the array of materials explored for enhancing anion exchange membranes due to their inherent advantages. These copolymers offer unparalleled flexibility in adjustment and boast superior mechanical properties, making them highly adaptable for modifying anion exchange membranes to meet desired specifications. In order to demonstrate the benefits of block copolymer, this paper primarily summarizes and examines the techniques for varying the material content, investigating composition to identify the block copolymer anion exchanging membrane with exceptional performance characteristics, and contrasting it with the random copolymer, polymer blend, and homopolymer exchange membrane. The results unequivocally demonstrate the efficacy of block copolymers in improving the material structure of exchange membranes by fine-tuning the polymer content. Notably, block copolymers outperform other copolymers in significantly enhancing the performance metrics of anion exchange membranes. In summary, studying block copolymers is a practical way to significantly enhance the performance and functionality of anionic exchange membranes, which will help the alkaline fuel cell industry move toward greater sustainability

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call