Abstract

Polymer brushes have proven to have great potential in oil-water separation but it remains a long-standing challenge to improve their operational stability and service endurance. In this work, we sequentially grafted polydimethylsiloxane (PDMS) and poly (N-isopropylacrylamide) (PNIPAM) brushes on the cotton fabric to prepare a durable and self-reparing oil-water separation film (Co@PDMS/PNIPAM). The grafting of liquid PDMS brushes significantly improved the antifouling performance through its lubricating effect thereby improving the durability. The hydrophilic and thermoresponsive PNIPAM was synthesized through a surface-initiated atom transfer radical polymerization (SI-ARGET ATRP). Co@PDMS/PNIPAM shows high flux in various oily water and bio-solution. More remarkably, Co@PDMS/PNIPAM exhibited intelligent self-repairing characteristics, and this further enhances its stability and service endurance in the application of oil-water separation. The results provide pathways to the preparation of antifouling and durable membranes in the application of water treatment, and resource recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.