Abstract

Surface-initiated atom transfer radical polymerization (SI-ATRP) is one of the most popular methods for surface modifications with functional polymer films, which has attracted significant attention in recent years. Here, wereport a facile method of gallium-based liquid metal nanodroplets (GLM) mediated SI-ATRP to prepare polymer brushes on GLM surfaces. The ATRP initiator modified GLM nanodroplets (GLM-Br) act as a substrate for the in situ SI-ATRP and participate as a reducing agent to reduce Cu(II) deactivators to Cu(I) activators. UV-vis spectra confirm the feasibility of the in situ SI-ATRP and indicate that the thickness and density of polymer brushes play an important role in performing a successful ATRP on GLMs surfaces. Homo- and block copolymers, poly(3-sulfopropyl methacrylate potassium salt) (PSPMA) and poly((2-dimethylamino)ethyl methacrylate-b-(3-sulfopropyl methacrylate potassium salt)) P(DMAEMA-b-SPMA) are successfully grafted to the GLM nanodroplets. Polymer brushes modified GLM nanodroplets show potential applications such as friction reduction and oil-water emulsion separation. GLM nanodroplets mediated SI-ATRP provides a novel and robust approach to preparing multifunctional GLM nanodroplets for differentapplications. This article is protected by copyright. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.