Abstract
An accurate three-dimensional method to calculate the Bloch modes of photonic crystal waveguides is proposed. Good agreement with available experimental and numerical data is obtained. The originality of the method lies in the fact that the Bloch modes are seen as the electromagnetic fields associated to the complex poles of an in-plane transversal scattering matrix. In comparison with previous approaches, the computational domain discretized is smaller and a higher accuracy for the losses of photonic crystal waveguides is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.