Abstract

The efficient and reliable computation of guided modes in photonic crystal wave-guides is of great importance for designing optical devices. Transparent boundary conditions based on Dirichlet-to-Neumann operators allow for an exact computation of well-confined modes and modes close to the band edge in the sense that no modelling error is introduced. The well-known super-cell method, on the other hand, introduces a modelling error which may become prohibitively large for guided modes that are not well-confined. The Dirichlet-to-Neumann transparent boundary conditions are, however, not applicable for all frequencies as they are not uniquely defined and their computation is unstable for a countable set of frequencies that correspond to so called Dirichlet eigenvalues. In this work we describe how to overcome this theoretical difficulty introducing Robin-to-Robin transparent boundary conditions whose construction do not exhibit those forbidden frequencies. They seem, hence, well suited for an exact and reliable computation of guided modes in photonic crystal wave-guides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.