Abstract

The linear Schrödinger equation with periodic potentials is an important model in solid state physics. The most efficient direct simulation using a Bloch decomposition-based time-splitting spectral method [18] requires the mesh size to be O ( ϵ ) where ϵ is the scaled semiclassical parameter. In this paper, we generalize the Gaussian beam method introduced in Jin et al. [23] to solve this problem asymptotically. We combine the technique of Bloch decomposition and the Eulerian Gaussian beam method to arrive at an Eulerian computational method that requires mesh size of O ( ϵ ) . The accuracy of this method is demonstrated via several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.