Abstract

The images from a monocular camera can be processed to detect depth information regarding obstacles in the blind spot area captured by the side-view camera of a vehicle. The depth information is given as a classification result “near” or “far” when two blocks in the image are compared with respect to their distances and the depth information can be used for the purpose of blind spot area detection. In this paper, the proposed depth information is inferred from a combination of blur cues and texture cues. The depth information is estimated by comparing the features of two image blocks selected within a single image. A preliminary experiment demonstrates that a convolutional neural network (CNN) model trained by deep learning with a set of relatively ideal images achieves good accuracy. The same CNN model is applied to distinguish near and far obstacles according to a specified threshold in the vehicle blind spot area, and the promising results are obtained. The proposed method uses a standard blind spot camera and can improve safety without other additional sensing devices. Thus, the proposed approach has the potential to be applied in vehicular applications for the detection of objects in the driver’s blind spot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.