Abstract
In this paper, our objectives are to estimate the moments of inertia and reconstruct the inputs of a two-link pendulum that models a human arm. A blind parameter identification routine to determine the inertia properties of human limbs without input data based on a combination of collocation discretization and homotopy optimization is suggested. Without the input data, inertia parameters are structurally unidentifiable. Complementary equations in terms of the ratio of inertia parameters in the cost function and the rate of change of the inputs in the constraints are introduced to make the problem structurally identifiable. Numerous simulations are performed to validate our approach. Experiments to record human upper arm and forearm oscillatory movements were also performed, and moment of inertia terms were evaluated. The significance of the proposed method is that the method can be used to evaluate the moments of inertia of human body segments only from the experimental kinematic data. The advantages of the method are: numerical integration of dynamic and sensitivity equations is avoided and the record of the inputs to the system is not needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.