Abstract

Despite all its irrefutable benefits, the development of steganography methods has sparked ever-increasing concerns over steganography abuse in recent decades. To prevent the inimical usage of steganography, steganalysis approaches have been introduced. Since motion vector manipulation leads to random and indirect changes in the statistics of videos, MV-based video steganography has been the center of attention in recent years. In this paper, we propose a 54-dimentional feature set exploiting spatio-temporal features of motion vectors to blindly detect MV-based stego videos. The idea behind the proposed features originates from two facts. First, there are strong dependencies among neighboring MVs due to utilizing rate-distortion optimization techniques and belonging to the same rigid object or static background. Accordingly, MV manipulation can leave important clues on the differences between each MV and the MVs belonging to the neighboring blocks. Second, a majority of MVs in original videos are locally optimal after decoding concerning the Lagrangian multiplier, notwithstanding the information loss during compression. Motion vector alteration during information embedding can affect these statistics that can be utilized for steganalysis. Experimental results have shown that our features’ performance far exceeds that of state-of-the-art steganalysis methods. This outstanding performance lies in the utilization of complementary spatio-temporal statistics affected by MV manipulation as well as feature dimensionality reduction applied to prevent overfitting. Moreover, unlike other existing MV-based steganalysis methods, our proposed features can be adjusted to various settings of the state-of-the-art video codec standards such as sub-pixel motion estimation and variable-block-size motion estimation.

Highlights

  • Development of wireless communications has brought countless advantages to our daily lives, albeit sometimes disadvantageous

  • Exploiting the aforementioned facts, we propose a spatio-temporal steganalysis feature extraction method to take full advantage of the clues that MV-based video steganography leaves on the statistics of a video

  • 3) We have evaluated the effect of different compression settings, namely motion estimation algorithm and quantization parameter on detection reliability

Read more

Summary

Introduction

Development of wireless communications has brought countless advantages to our daily lives, albeit sometimes disadvantageous. Transmitting meaningless content through communication channels leaves a clue about secret communication; whereas we sometimes aim to hide the existence of confidential information In these cases, steganography approaches are employed to cover communication with guiltless-looking media.. The steganalyzer is sometimes assumed to know the exact steganography algorithm which might be applied for hiding information, or have some partial information about the steganography algorithm, or even is completely ignorant of the steganography method. Based on this available information, steganalysis approaches lie in two main categories: specific (targeted) and blind (universal) steganalysis. Since obtaining detailed information about the steganography scheme is somewhat optimistical, blind steganalysis approaches are of great importance

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.