Abstract

Prevalent adaptive modulation and coding (AMC) techniques can facilitate the flexible strategies subject to the dynamic channel quality. It would be quite intriguing for one to build a blind encoder identification technique without spectrum-efficiency sacrifice for AMC transceivers. In this paper, we make the first-ever attempt to tackle the blind nonbinary low-density parity-check (LDPC) encoder identification given a predefined encoder candidate set over the Galois field GF(q) for q-ary quadrature amplitude modulation (q-QAM) signals. Our proposed method establishes the log-likelihood ratios (LLRs) of syndrome a posteriori probabilities (APPs), which specify the potential correctness of the underlying parity-check relations, and identifies the nonbinary LDPC encoder leading to the maximum average LLR over the candidate set. Monte Carlo simulation results verify the effectiveness of our proposed new scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.