Abstract
Most of the digital communication system uses forward error correction (FEC) in addition with interleaver to achieve reliable communication over a noisy channel. To get useful information from intercepted data, in non-cooperative context, it is necessary to have algoritihms for blind identification of FEC code and interleaver parameters. In this paper, a matrix rank-based algebraic algorithm for the joint and blind identification of block interleaved convolution code parameters for cases, where interleaving length is not necessarily an integer multiple of codeword length is presented. From simulations, it is observed that the code rate and block interleaver length are identified correctly with probability of detection equal to 1 for bit error rate values of less than or equal to 10-4.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have