Abstract

We propose a blind and low-complexity modulation format identification (MFI) scheme for elastic optical networks (EONs). Since the square operation reduces half the number of the clusters in Stokes space, the scheme directly performs principal component analysis (PCA) on Stokes parameters after square operation. This greatly reduces the dimensionality of received signals from 3 × N to 3 × 3. Subsequently, three obtained principal components (PCs) are employed synthetically to identify the modulation formats. The effectiveness is first verified through 28 GBaud polarization division multiplexing (PDM)-BPSK/-QPSK/-8QAM/-16QAM/-32QAM/-64QAM simulation systems. Only using 2048 symbols, the required minimum optical signal-to-noise ratio (OSNR) values to achieve 100% MFI success rate are all equal to or lower than their corresponding 7% forward error correction (FEC) thresholds. Besides that, the scheme also obtains significant tolerances to residual chromatic dispersion (CD) and differential group delay (DGD). Finally, the proposed scheme is further verified by 20 GBaud PDM-QPSK/-16QAM/-32QAM long-haul transmission experiments. The results demonstrate that the scheme exhibits good resilience towards fiber nonlinear impairments. More importantly, compared with other four kinds of MFI schemes, the used symbol number to achieve 100% MFI success rate notably equals to at most 2/5 as that of other schemes, and its time complexity can be reduced to O(N).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.