Abstract

AbstractBlends of a thermotropic liquid crystalline polymer (LCP), Vectra A900, and a thermoplastic elastomer, Kraton G1650, were made on a single screw extruder. During extrusion, fibers of the LCP are formed under influence of shearing and elongating forces. The stiffness and tensile strength of the elastomer are greatly improved by the addition of the LCP. The modulus of elasticity of blends containing up to 20% LCP can be described well with the Halpin‐Tsai equation. Differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA) measurements show that the polymers are immiscible, but the DMTA results show a shift of the glass transition temperature of the elastomeric block of the Kraton polymer. This shift may be attributed to a layer of elastomer adsorbed on the LCP particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.