Abstract

Sheets from blends containing poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) were prepared using a twin-screw extruder. The LCP used is a copolymer composed of 20 mol % ethylene terephalate (PET) and 80 mol % p-hydroxybenzoic acid (PHB). Thermal behavior, viscoelastic properties, and structure of the sheets of various compositions were investigated by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), microwave orientation analysis (MOA), and wide angle x-ray diffraction (WAXD). X-ray diffractograms of extruded sheets from PBT, LCP, and their blends show a high degree of orientation along extrusion direction. The orientation is mainly due to the high crystallization rate of PBT, although crystallization and orientation of PBT in the PBT and LCP blends could also be induced by adding LCP. In the PBT and LCP blends, the thermal properties of the constituents are slightly changed indicating that PBT and LCP are partially miscible. DSC measurements show that as the amount of LCP added to the blend increased, the melting point Tm of PBT in the blends decreased. The single glass transition temperature Tg for the PBT and LCP was observed by DMA. Furthermore, no evidence of transesterification in PBT and LCP blends was observed by WAXD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call