Abstract
Blends of polycaprolactone (PCL) and chitosan (CHT) were prepared by casting from the mixture of solutions of both components in suitable solvents. PCL, and CHT, form phase separated blends with improved mechanical properties and increased water sorption ability with respect to pure PCL. The morphology of the system was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal microscopy. Dispersed domains of CHT in the semicrystalline PCL matrix were found in samples with less than 20% CHT but cocontinuous phase morphologies are found in blends with 20% or more CHT. This feature was corroborated by the temperature dependence of the elastic modulus measured by dynamic mechanical properties as a function of temperature. It was observed that for those blends above 20 wt% CHT, the mechanical stability of the system was kept even after melting of the PCL phase. Primary human chondrocytes were cultured on the different substrates. Cell morphology was studied by SEM and the viability and proliferation was investigated by the colorimetric MTT assay. Different protein conformations were found by AFM on CHT and PCL samples which were related to the biological performance of the substrates. Hydrophilicty of the material is not directly related to the biological response and the sample with 20 wt% CHT shows better results than the other blends with respect to chondrocyte viability and proliferation. However, the results obtained in the blends are worse than in pure PCL. It seems to be correlated with the surface energy of the different blends rather than hydrophilicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.