Abstract
Israel’s water and vegetative agriculture sectors are interdependent, as the latter constitutes the solution for wastewater disposal. We employ a dynamic mathematical programming model that captures this interdependence for evaluating the economic damage of irrigation water salinity under two strategies of blending water sources with different salinities: field blending, which enables farmers to assign water with a specific salinity to each crop, and regional blending, under which all crops experience similar water salinity. Relative to field blending, the buildup rate of desalination under regional blending is slightly expedited; nevertheless, reallocations of water sources across sectors and crops increase the average irrigation water salinity, and the overall welfare decreases by USD 0.08 per cubic meter of irrigation water—about 20% of the water’s average value of marginal product. Salinity-sensitive crops will face the largest per hectare production reduction if regional blending replaces field blending; however, the combined variations in the prices of irrigation water and agricultural outputs may motivate farmers to move irrigation water to these crops. Under equilibrium conditions in the two sectors, a 1% increase in the average salinity of the irrigation water supplied to a region reduces the value of the marginal product of that water by 2.4% and 1.6% under field and regional blending, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.