Abstract
AbstractSeveral types of ℋ︁‐matrices were shown to provide a data‐sparse approximation of non‐local (integral) operators in FEM and BEM applications. The general construction is applied to the operators with asymptotically smooth kernel function provided that the Galerkin ansatz space has a hierarchical structure.The new class of ℋ︁‐matrices is based on the so‐called blended FE and polynomial approximations of the kernel function and leads to matrix blocks with a tensor‐product of block‐Toeplitz (block‐circulant) and rank‐k matrices. This requires the translation (rotation) invariance of the kernel combined with the corresponding tensor‐product grids. The approach allows for the fast evaluation of volume/boundary integral operators with possibly non‐smooth kernels defined on canonical domains/manifolds in the FEM/BEM applications. (Here and in the following, we call domains canonical if they are obtained by translation or rotation of one of their parts, e.g. parallelepiped, cylinder, sphere, etc.) In particular, we provide the error and complexity analysis for blended expansions to the Helmholtz kernel. Copyright © 2002 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have