Abstract

AbstractConducting hydrogel copolymer was prepared by graft copolymerization of carboxymethyl cellulose (CMC) and boric acid onto poly(vinyl alcohol) (PVA). The dielectric properties of CMC‐g‐PVA/prehydrolyzed banana blend have been investigated as a function of frequency, with special reference to pure prehydrolyzed banana. Also, the static bending for the blend was determined and no abrupt failure was observed. The dielectric properties measured were dielectric constant (ε′), dissipation factor (tan δ), and loss factor (ε″). At high frequencies, a transition in the relaxation behavior was observed, whereby the dielectric constant, loss tangent, and loss factor decreased with frequency. Experimental ε′ values of the blend are greater than those of prehydrolyzed banana. The dielectric behavior depends greatly on the nature of the present group, the crystallinity of the system, and the degree of hydrogen bonding between the different chains. The variation of the dielectric properties was correlated with blend morphology and also to the possibility for interfacial polarization that arises because of the differences in conductivities of the two phases. It was found from the infrared spectra that the incorporation of CMC‐g‐PVA copolymer decreases the crystallinity of the blend and also decreases the degree of hydrogen bonding, which results in a high dielectric constant. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1842–1848, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.