Abstract

Box shaped parts demonstrate unusual characteristics as opposed to the drawn cylindrical cups. A novel approach for blank development, based on the modified plane strain slip line field (SLF), is presented in this work. The approach is to balance the element volume between the final position in the wall and the starting position in the flat flange. The end result of this SLF based unfolding technique is a set of elements representing the deformation path of the part. By post-processing the information on the nodal coordinates and invoking the variational principle in its incremental form, the strain distribution in the flange and the wall stresses are determined. A methodology is also presented for understanding the implications of the metal flow lines for tooling design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.